These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A.
    Author: Aiken C.
    Journal: J Virol; 1997 Aug; 71(8):5871-7. PubMed ID: 9223476.
    Abstract:
    Human immunodeficiency virus type 1 (HIV-1) normally enters cells by direct fusion with the plasma membrane. In this report, HIV-1 particles capable of infecting cells through an endocytic pathway are described. Chimeric viruses composed of the HIV-1 core and the envelope glycoprotein of vesicular stomatitis virus (VSV-G) were constructed and are herein termed HIV-1(VSV) pseudotypes. HIV-1(VSV) pseudotypes were 20- to 130-fold more infectious than nonpseudotyped HIV-1. Infection by HIV-1(VSV) pseudotypes was markedly diminished by ammonium chloride and concanamycin A, a selective inhibitor of vacuolar H+ ATPases, demonstrating that these viruses require endosomal acidification to achieve productive infection. HIV-1 is thus capable of performing all of the viral functions necessary for infection when entry is targeted to an endocytic route. Maximal HIV-1 infectivity requires the presence of the viral Nef protein and the cellular protein cyclophilin A (CyPA) during virus assembly. Pseudotyping by VSV-G markedly suppressed the requirement for Nef. HIV-1(VSV) particles were also resistant to inhibition by cyclosporin A; however, the deleterious effect of a gag mutation inhibiting CyPA incorporation was not relieved by VSV-G. These results suggest that Nef acts at a step of the HIV-1 life cycle that is either circumvented or facilitated by targeting virus entry to an endocytic pathway. The findings also support the hypothesis that Nef and CyPA enhance HIV-1 infectivity through independent processes and demonstrate a mechanistic difference between reduction of HIV-1 infectivity by cyclosporin A and gag mutations that decrease HIV-1 incorporation of CyPA.
    [Abstract] [Full Text] [Related] [New Search]