These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. Author: Sutton D, Butler AM, Nadin L, Murray M. Journal: J Pharmacol Exp Ther; 1997 Jul; 282(1):294-300. PubMed ID: 9223567. Abstract: The antihypertensive agent diltiazem (DTZ) impairs hepatic drug metabolism by inhibition of cytochrome P450 (CYP). The accumulation of DTZ metabolites in serum occurs during prolonged therapy and leads to decreased DTZ elimination. Thus, DTZ metabolites may contribute to CYP inhibition. This study assessed the role of human CYPs in microsomal DTZ oxidation and the capacity of DTZ metabolites to inhibit specific CYP activities. DTZ N-demethylation varied 10-fold in microsomal fractions from 17 livers (0.33-3.31 nmol/mg of protein/min). DTZ oxidation was correlated with testosterone 6beta-hydroxylation (r = 0.82) and, to a lesser extent, tolbutamide hydroxylation (r = 0.59) but not with activities mediated by CYP1A2 or CYP2E1. CYP3A4 in lymphoblastoid cell microsomes catalyzed DTZ N-demethylation but CYP2C8 and CYP2C9 were also active (approximately 20% and 10% of the activity supported by CYP3A4); seven other CYPs produced little or no N-desmethyl DTZ from DTZ. The CYP3A4 inhibitors ketoconazole and troleandomycin decreased microsomal DTZ oxidation, but inhibitors or substrates of CYP2C, CYP2D and CYP2E1 produced no inhibition. Some inhibition was produced by alpha-naphthoflavone, a chemical that inhibits CYP1As and also interacts with CYP3A4. In further experiments, the capacities of DTZ and three metabolites to modulate human CYP 1A2, 2E1, 2C9 and 3A4 activities were evaluated in vitro. DTZ and its N-desmethyl and N,N-didesmethyl metabolites selectively inhibited CYP3A4 activity, whereas O-desmethyl DTZ was not inhibitory. The IC50 value of DTZ against CYP3A4-mediated testosterone 6beta-hydroxylation (substrate concentration, 50 microM) was 120 microM. The N-desmethyl (IC50 = 11 microM) and N,N-didesmethyl (IC50 = 0.6 microM) metabolites were 11 and 200 times, respectively, more potent. From kinetic studies, N-desmethyl DTZ and N,N-didesmethyl DTZ were potent competitive inhibitors of CYP3A4 (Ki = approximately 2 and 0.1 microM, respectively). CYP3A4 inhibition was enhanced when DTZ and N-desmethyl DTZ underwent biotransformation in NADPH-supplemented hepatic microsomes in vitro, supporting the contention that inhibitory metabolites may be generated in situ. These findings suggest that N-demethylated metabolites of DTZ may contribute to CYP3A4 inhibition in vivo, especially under conditions in which N-desmethyl DTZ accumulates, such as during prolonged DTZ therapy.[Abstract] [Full Text] [Related] [New Search]