These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preferred conformation of peptides rich in Ac8c, a medium-ring alicyclic C (alpha,alpha)-disubstituted glycine. Author: Moretto V, Formaggio F, Crisma M, Bonora GM, Toniolo C, Benedetti E, Santini A, Saviano M, Di Blasio B, Pedone C. Journal: J Pept Sci; 1996; 2(1):14-27. PubMed ID: 9225242. Abstract: A complete series of terminally blocked, monodispersed homo-oligopeptides (to the pentamer level) from the sterically demanding, medium-ring alicyclic C (alpha,alpha)-disubstituted glycine 1-aminocyclooctane-1-carboxylic acid (Ac8c), and two Ala/Ac8c tripeptides, were synthesized by solution methods and fully characterized. The preferred conformation of all the oligopeptides was determined in deuterochloroform solution by IR absorption and 1H-NMR. The molecular structures of the amino acid derivative Z-Ac8c-OH, the dipeptide pBrBz-(Ac8c)2-OH and the tripeptide pBrBz-(Ac8c)3-OtBu were assessed in the crystal state by X-ray diffraction. Conformational energy computations were performed on the monopeptide Ac-Ac8c-NHMe. Taken together, the results obtained strongly support the view that the Ac8c residue is an effective beta-turn and helix former. A comparison is also made with the conformational preferences of alpha-aminoisobutyric acid, the prototype of C (alpha,alpha)-disubstituted glycines, and of the other members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc with n = 3, 5-7) investigated so far. The implications for the use of the Ac8c residue in peptide conformational design are considered.[Abstract] [Full Text] [Related] [New Search]