These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 5-HT3 receptors in outside-out patches of N1E-115 neuroblastoma cells: basic properties and effects of pentobarbital.
    Author: Barann M, Göthert M, Bönisch H, Dybek A, Urban BW.
    Journal: Neuropharmacology; 1997; 36(4-5):655-64. PubMed ID: 9225291.
    Abstract:
    A fast solution exchange system (Dilger and Brett, 1990; Biophysics Journal 57: 723-731) with an exchange rate < 1 msec was used to study 5-HT3 (5-HT; 5-hydroxytryptamine) receptor-mediated currents in superfused outside-out patches of N1E-115 mouse neuroblastoma cells. At negative membrane potentials, 5-HT induced inward currents in a concentration-dependent manner (IC50 = 3.8 microM, Hill coefficient = 1.8). The mean peak current at a near-maximally effective 5-HT concentration of 30 microM was 20.6 pA. The 5-HT3 receptor antagonist ondansetron (0.3 nM) reversibly inhibited the 5-HT (30 microM) signal by approximately 50%. The currents induced during application of 30 microM 5-HT for 2 sec were characterized by inward rectification, a monophasic onset (tau ON = 37.5 msec) and, after reaching a peak, a monophasic decay (desensitization; tau OFF = 391 msec). Onset and decay were slower at lower 5-HT concentrations. The recovery of fully desensitized patches required a washout period of 45 sec. Pentobarbital inhibited 5-HT-induced (30 microM) currents in a concentration-dependent manner. The maximally obtainable inhibition with a given pentobarbital concentration was reached already when it was exclusively coapplied with 5-HT (IC50 = 135 microM. Hill coefficient = -0.7), since additional preexposure for at least 45 sec did not alter the concentration-response curve of pentobarbital. In conclusion, outside-out patches of N1E-115 cells are suitable to study the kinetic properties of 5-HT3 receptor channels. The results obtained in this model with pentobarbital are compatible with the suggestion that the inhibitory action of pentobarbital on 5-HT3 receptors is dependent on the agonist-activated (open) channel.
    [Abstract] [Full Text] [Related] [New Search]