These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional and radioligand binding characterization of rat 5-HT6 receptors stably expressed in HEK293 cells.
    Author: Boess FG, Monsma FJ, Carolo C, Meyer V, Rudler A, Zwingelstein C, Sleight AJ.
    Journal: Neuropharmacology; 1997; 36(4-5):713-20. PubMed ID: 9225298.
    Abstract:
    We have stably expressed the rat 5-HT6 receptor in HEK293 cells at a density of > 2 pmol/mg protein, as determined in equilibrium binding studies with [3H]-LSD and [3H]-5-HT and compared the affinity of a range of compounds in competition binding experiments with either [3H]-LSD or [3H]-5-HT as radioligand. A variety of tryptamine derivatives were tested and showed a significantly higher affinity when the 5-HT6 receptor was labelled with [3H]-5-HT, whereas ergoline compounds and several antagonists had higher affinities when [3H]-LSD was used as radioligand. Subsequently we examined the ability of LSD, 5-HT and a number of tryptamine derivatives to stimulate cAMP accumulation in order to determine their agonist potency and efficacy. We observed the following rank order of potency: LSD > omega-N-methyl-5-HT approximately bufotenine approximately 5- methoxytryptamine > 5-HT > 2-methyl-5-HT approximately 5-benzyloxytryptamine approximately tryptamine > 5-carboxamidotryptamine > > 5-HTQ. LSD, lisuride, 2-methyl-5-HT, tryptamine and 5-benzyloxytryptamine behaved as partial agonists relative to 5-HT. The rank order of potency of the tryptamine compounds correlated well with their affinities determined in binding assays. In addition, we have tested a number of antagonists in this system (rank order of potency: methiothepin, clozapine, mianserin and ritanserin). This characterization of the pharmacological properties of recombinant 5-HT6 receptor will facilitate the identification of 5-HT6 receptor-mediated responses in physiological systems.
    [Abstract] [Full Text] [Related] [New Search]