These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extrapancreatic action of truncated glucagon-like peptide-I in Otsuka Long-Evans Tokushima Fatty rats, an animal model for non-insulin-dependent diabetes mellitus. Author: Mizuno A, Kuwajima M, Ishida K, Noma Y, Murakami T, Tateishi K, Sato I, Shima K. Journal: Metabolism; 1997 Jul; 46(7):745-9. PubMed ID: 9225826. Abstract: To clarify the mechanism(s) of the antidiabetic effects of truncated glucagon-like peptide-1 (GLP-1) in diabetics, we examined its insulinotropic and extrapancreatic effects in a newly established strain of spontaneously non-insulin-dependent diabetic (NIDDM) rats, Otsuka Long-Evans Tokushima Fatty (OLETF) rats, that received a continuous infusion of truncated GLP-1 620 pmol/d/kg (G group, n = 12) or of vehicle (V group, n = 12) for 4 weeks by Alzet pump. Nonfasting plasma glucose levels were significantly lower (P < .05) in the G group than in the V group (7.0 +/- 0.67 v 9.1 +/- 1.7 mmol/L), and fasting plasma immunoreactive insulin (IRI) levels were lower in the former than in the latter (0.63 +/- 0.31 v 0.78 +/- 0.25 nmol/L). At day 15 of infusion, the G group showed an attenuated plasma glucose response to an oral glucose load, but had plasma IRI levels comparable to those in the V group. A long-term infusion of truncated GLP-1 increased the glucose infusion rate (GIR) significantly (P < .05) during a euglycemic-hyperinsulinemic clamp test (59.0 +/- 14.8 mumol/kg/min for group G v 38.9 +/- 12.2 for group V), but hepatic glucose output (HGO) did not differ significantly for either group. Uptake of 2-deoxy-D-glucose (2DG) by peripheral muscles in the G group was as much as 2.4-fold higher than in the V group (5.52 +/- 2.04 v 2.29 +/- 0.97 mumol/100 g muscle weight/min). We conclude from these data that truncated GLP-1, in addition to its well-known incretin effect, is capable of augmenting insulin action in peripheral tissues of diabetics, which can contribute, in part, to improve glucose intolerance in OLETF rats.[Abstract] [Full Text] [Related] [New Search]