These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of purified enolases from oral bacteria by fluoride.
    Author: Guha-Chowdhury N, Clark AG, Sissons CH.
    Journal: Oral Microbiol Immunol; 1997 Apr; 12(2):91-7. PubMed ID: 9227132.
    Abstract:
    Enolase activity in strains of oral streptococci previously has been found to be inhibited by 50% (Ki) by fluoride concentrations ranging from 50 to 300 microM or more in the presence of 0.5 to 1.0 mM inorganic phosphate ions. In this study, enolase was extracted and partly purified by a two-step process from five oral bacterial species and the effect of fluoride on the kinetics of enolase examined. The molecular weight of the putative enolase proteins was 46-48 kDa. The Vmax values ranged from 20 to 323 IU/mg and K(m) for glycerate-2-phosphate from 0.22 to 0.74 mM. Enolase activity was inhibited competitively by fluoride, with Ki values ranging from 16 to 54 microM in the presence of 5 mM inorganic phosphate ions. Ki values for phosphate ranged from 2 to 8 mM. The enolase from Streptococcus sanguis ATCC 10556 was more sensitive to fluoride (Ki = 16 +/- 2) than was enolase from Streptococcus salivarius ATCC 10575 (Ki = 19 +/- 2) or Streptococcus mutans NCTC 10449 (Ki = 40 +/- 4) and all three streptococcal strains were more sensitive to fluoride than either Actinomyces naeslundii WVU 627 (Ki = 46 +/- 6) or Lactobacillus rhamnosus ATCC 7469 (Ki = 54 +/- 6) enolases. The levels of fluoride found to inhibit the streptococcal enolases in this study are much lower than previously reported and are likely to be present in plaque, especially during acidogenesis, and could exert an anti-glycolytic effect.
    [Abstract] [Full Text] [Related] [New Search]