These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitric oxide donors inhibit spontaneous depolarizations by L-type Ca2+ currents in alveolar epithelial cells. Author: Schobersberger W, Friedrich F, Hoffmann G, Völkl H, Dietl P. Journal: Am J Physiol; 1997 Jun; 272(6 Pt 1):L1092-7. PubMed ID: 9227509. Abstract: L2 cells, a cloned pneumocyte-derived cell line, express voltage-dependent L-type Ca2+ channels, causing transient depolarizing spikes of the membrane potential (Vm) [P. Dietl, T. Haller, B. Wirleitner, H. Völkl, F. Friedrich, and J. Striessing. Am. J. Physiol. 269 (Lung Cell. Mol. Physiol. 13): L873-L883, 1995]. In this study, we examined the effect of nitric oxide (NO)- and guanosine 3',5'-cyclic monophosphate (cGMP)-dependent cell signaling on the activity of L-type Ca2+ channels. Using conventional microelectrodes, spontaneous depolarizations (SD) of Vm by activation of these channels are regularly seen in the presence of 10 mM bath Sr2+. The NO donors sodium nitroprusside (SNP; 1 mM), 3-morpholinosydnonimine (SIN-1; 100 microM), as well as S-nitroso-N-acetyl-D,L-penicillamine (SNAP; 10 microM) caused a significant reduction of the frequency of Sr(2+)-induced SD. These effects were completely reversed by 6-anilino-5,8-quinolinequinone (10 microM), an inhibitor of the soluble guanylyl cyclase, and could be mimicked by 8-bromoguanosine 3'5'-cyclic monophosphate (8-BrcGMP; 100 microM). Perforated patch-clamp experiments revealed that 8-BrcGMP exerted a significant decrease of the depolarization-induced L-type Sr2+ current in the majority of tested cells. Consistent with the dependency of these NO-mediated effects on cGMP, incubation of L2 cells with SNP, SIN-1, and SNAP lead to a pronounced increase of cellular cGMP concentration. We conclude that the NO donors inhibit the activity of L-type Ca2+ channels in L2 cells via a cGMP-dependent pathway. In the alveoli, this might occur under conditions associated with the release of NO.[Abstract] [Full Text] [Related] [New Search]