These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nasal contribution to exhaled nitric oxide during exhalation against resistance or during breath holding. Author: Kharitonov SA, Barnes PJ. Journal: Thorax; 1997 Jun; 52(6):540-4. PubMed ID: 9227721. Abstract: BACKGROUND: The concentration of nitric oxide (NO) is increased in the exhaled air of patients with inflammation of the airways, suggesting that this may be a useful measurement to monitor inflammation in diseases such as asthma. However, there have been concerns that exhaled NO may be contaminated by the high concentrations of NO derived from the upper airways, and that this may account for differences in reported values of exhaled NO using different techniques. A study was performed, with argon as a tracer, to determine the extent of nasal contamination of exhaled NO using different expiratory manoeuvres. METHODS: Exhaled and nasal NO were measured by a chemiluminescence analyser. Argon (4.8%) was delivered continuously to the nose. Gas was sampled from the posterior oropharynx and argon and carbon dioxide were measured by mass spectrometry at the same time as NO. RESULTS: During a single expiration against a low resistance and during breath holding there was no evidence for nasal contamination, whereas during exhalation without resistance argon concentration in the oropharynx was increased from 0.91% (95% CI 0.84% to 0.98%) in ambient air to 1.28% (0.9% to 2.24%, p < 0.0001) during a single breath or 2.37% (2.29% to 2.51%, p < 0.0001) during tidal breathing. CONCLUSIONS: Collection of exhaled NO in a reservoir during tidal breathing is likely to be contaminated by NO derived from the nose and this may underestimate any increases in NO derived from the lower respiratory tract in inflammatory diseases. However, with slow expiration against a resistance and created back pressure to close the soft palate, there is no contamination of exhaled air which then reflects concentrations of NO in the lower airways.[Abstract] [Full Text] [Related] [New Search]