These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+-dependent interaction of the growth-associated protein GAP-43 with the synaptic core complex. Author: Haruta T, Takami N, Ohmura M, Misumi Y, Ikehara Y. Journal: Biochem J; 1997 Jul 15; 325 ( Pt 2)(Pt 2):455-63. PubMed ID: 9230128. Abstract: The synaptic vesicle exocytosis occurs by a highly regulated mechanism: syntaxin and 25 kDa synaptosome-associated protein (SNAP-25) are assembled with vesicle-associated membrane protein (VAMP) to form a synaptic core complex and then synaptotagmin participates as a Ca2+ sensor in the final step of membrane fusion. The 43 kDa growth-associated protein GAP-43 is a nerve-specific protein that is predominantly localized in the axonal growth cones and presynaptic terminal membrane. In the present study we have examined a possible interaction of GAP-43 with components involved in the exocytosis. GAP-43 was found to interact with syntaxin, SNAP-25 and VAMP in rat brain tissues and nerve growth factor-dependently differentiated PC12 cells, but not in undifferentiated PC12 cells. GAP-43 also interacted with synaptotagmin and calmodulin. These interactions of GAP-43 could be detected only when chemical cross-linking of proteins was performed before they were solubilized from the membranes with detergents, in contrast with the interaction of the synaptic core complex, which was detected without cross-linking. Experiments in vitro showed that the interaction of GAP-43 with these proteins occurred Ca2+-dependently; its maximum binding with the core complex was observed at 100 microM Ca2+, whereas that of syntaxin with synaptotagmin was at 200 microM Ca2+. These values of Ca2+ concentration are close to that required for the Ca2+-dependent release of neurotransmitters. Furthermore we observed that the interaction in vitro of GAP-43 with the synaptic core complex was coupled with protein kinase C-mediated phosphorylation of GAP-43. Taken together, our results suggest a novel function of GAP-43 that is involved in the Ca2+-dependent fusion of synaptic vesicles.[Abstract] [Full Text] [Related] [New Search]