These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the alpha and beta-subunits of the F0F1-ATPase from the alga Polytomella spp., a colorless relative of Chlamydomonas reinhardtii.
    Author: Atteia A, Dreyfus G, González-Halphen D.
    Journal: Biochim Biophys Acta; 1997 Jul 04; 1320(3):275-84. PubMed ID: 9230922.
    Abstract:
    The isolation and partial characterization of the oligomycin-sensitive F0F1-ATP synthase/ATPase from the colorless alga Polytomella spp. is described. Purification was performed by solubilization with dodecyl-beta-D-maltoside followed by Sepharose Hexyl ammonium chromatography, a matrix that interacts with the F1 sector of mitochondrial ATPases. The alpha-subunit, which migrates on SDS-polyacrylamide gels with an apparent molecular mass of 55 kDa, was identified by the N-terminal sequencing of 47 residues. This subunit exhibited a short extension at its N-terminus highly similar to the one described for the unicellular alga Chlamydomonas reinhardtii (Nurani, G. and Franzén L.-G. (1996) Plant Mol. Biol. 31, 1105-1116). In whole mitochondria, the alpha-subunit was susceptible to limited proteolytic digestion induced by heat. An endogenous protease removed the first 22 residues of the mature alpha-subunit. Subunit beta was also identified by N-terminal sequencing of 31 residues. This subunit of 63 kDa exhibited a higher apparent molecular mass than alpha, as judged by its mobility on denaturing polyacrylamide gel electrophoresis. This beta-subunit is 7-8 kDa larger than the beta-subunits of other mitochondrial ATPases. It is suggested that the beta-subunit from Polytomella spp. may have a C-terminal extension similar to that described for the green alga C. reinhardtii (Franzén, L.-G. and Falk, G.(1992) Plant Mol. Biol. 19, 771-780). In addition, it was found that the C-terminal extension of the beta-subunit of C. reinhardtii showed homology with the endogenous ATPase inhibitors from various sources and with the epsilon-subunit from the F0F1-ATP synthase from Escherichia coli, which is considered to be a functional homolog of the inhibitor proteins. The data reported here provide the first biochemical evidence for a close relationship between the colorless alga Polytomella spp. and its photosynthetic counterpart C. reinhardtii. It is also suggested that the C-terminal extensions of the beta-subunits of the ATP synthases from these algae, may play a regulatory role in these enzymes.
    [Abstract] [Full Text] [Related] [New Search]