These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: On the relationship between matrix free Mg2+ concentration and total Mg2+ in heart mitochondria.
    Author: Jung DW, Panzeter E, Baysal K, Brierley GP.
    Journal: Biochim Biophys Acta; 1997 Jul 04; 1320(3):310-20. PubMed ID: 9230923.
    Abstract:
    The matrix free magnesium ion concentration, [Mg2+]m, estimated using the fluorescent probe furaptra, averaged 0.67 mM in 15 preparations of beef heart mitochondria containing an average of 21 nmol total Mg2+ per mg protein. [Mg2+]m was compared with total Mg2+ during respiration-dependent uptake and efflux of Mg2+ and during osmotic swelling. In the absence of external Pi these mitochondria contain about 32 nmol/mg non-diffusible Mg-binding sites with an apparent Kd of 0.34 mM. [Mg2+]m depends on both the size of the total Mg2+ pool and the ability of matrix anions to provide Mg-ligands. Pi interacts strongly with Mg2+ to decrease [Mg2+]m and, in the absence of external Mg2+, promotes respiration-dependent Mg2+ efflux and a decrease in [Mg2+]m to very low levels. The uptake of Pi by respiring mitochondria converts delta pH to membrane potential (delta psi) and provides additional Mg-binding sites. This permits large accumulations of Mg2+ and Pi with little change in [Mg2+]m. Nigericin also converts delta pH to delta psi in respiring mitochondria and induces a large and rapid increase in both total Mg2+ and [Mg2+]m. Mersalyl increases the permeability of the mitochondrial membrane to cations and this also induces a marked increase in both total Mg2+ and [Mg2+]m. These results suggest that mitochondria take up Mg2+ by electrophoretic flux through membrane leak pathways, rather than via a specific Mg2+ transporter. Mitochondria swollen by respiration dependent uptake of potassium phosphate show decreased [Mg2+]m, whereas those swollen to the same extent in potassium acetate do not. This suggests that [Mg2+]m is well-buffered during osmotic volume changes unless there is also a change in ligand availability.
    [Abstract] [Full Text] [Related] [New Search]