These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biochemical analysis of myelin proteins in a novel neurological mutant: the taiep rat. Author: Möller JR, Durr PG, Quarles RH, Duncan ID. Journal: J Neurochem; 1997 Aug; 69(2):773-9. PubMed ID: 9231738. Abstract: Hemispheres, spinal cords, and sciatic nerves were taken from taiep, carrier, and control rats at ages ranging from 1 day to 16 months. Absolute myelin yields from CNS taiep tissues peaked at approximately 2 months and then decreased until they reached a low but stable level. Myelin yield from the affected hemispheres expressed as a percentage of age-matched controls decreased continuously from 2 weeks until it reached a stable level of approximately 10-15%. The same was true for the spinal cords, but here the myelin yield reached a plateau at a slightly higher percentage of 20-25%. In comparison with control rats, isolated CNS myelin fractions from the affected rats had a greater content of high molecular weight proteins. Western blot analyses of CNS homogenates revealed that myelin basic protein (MBP), proteolipid protein, and 2',3'-cyclic nucleotide 3'-phosphodiesterase were all present but decreased to levels generally consistent with the deficiencies of myelin. However myelin-associated glycoprotein (MAG) levels always were reduced much more than those of the other three myelin proteins, and at younger ages the apparent molecular weight for MAG was increased in the mutants. Western blot analyses of sciatic nerve homogenates showed that the levels of MBP, MAG, and P0 were not significantly different in control and mutant animals. These results suggested an early hypomyelination of the CNS, with peak levels of myelin at 2 months, followed by a prolonged period of myelin loss, until a very low but stable myelin level was reached. The consistently greater loss of MAG, in comparison with other CNS myelin proteins, is different from most other hypomyelinating mutants in which MAG is relatively preserved in comparison with the proteins of compact myelin. This might be due to microtubular abnormalities in the taiep mutant interfering with transport of myelin proteins and having the greatest effect on MAG because of its most distal location in the periaxonal oligodendroglial membranes.[Abstract] [Full Text] [Related] [New Search]