These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ecto-ADP-ribosyltransferase activity of Pseudomonas aeruginosa exoenzyme S.
    Author: Knight DA, Barbieri JT.
    Journal: Infect Immun; 1997 Aug; 65(8):3304-9. PubMed ID: 9234791.
    Abstract:
    Pseudomonas aeruginosa produces two ADP-ribosyltransferases, exotoxin A and exoenzyme S (ExoS). Although the physiological target protein remains to be defined, ExoS has been shown to ADP-ribosylate several eukaryotic proteins in vitro, including vimentin and members of the family of low-molecular-weight GTP-binding proteins. Recently, ExoS ADP-ribosyltransferase activity has been detected in the pleural fluid of rabbits infected with P. aeruginosa. This observation prompted an examination of the potential for ExoS to function as an ecto-ADP-ribosyltransferase. We have observed that ExoS preferentially ADP-ribosylated two extracellular serum proteins with molecular masses of 150 and 27 kDa. The ADP-ribosylation of these serum proteins by ExoS was stimulated by, but not dependent upon, exogenous FAS (for factor activating exoenzyme S), which indicated that serum contained endogenous FAS activity. Biochemical analysis showed that the 150-kDa ADP-ribosylated protein was immunoglobulin of the immunoglobulin G (IgG) and IgA classes. Subtyping showed that ExoS preferentially ADP-ribosylated human IgG3 and that ADP-ribosylation occurred within its Fc region. The 27-kDa protein ADP-ribosylated by ExoS was determined to be apolipoprotein A1. These data demonstrate ecto-ADP-ribosyltransferase activity by ExoS. This may extend the potential physiological consequences of ExoS during infection by P. aeruginosa beyond the implicated type III secretion-mediated intracellular delivery of ExoS into sensitive eukaryotic cells.
    [Abstract] [Full Text] [Related] [New Search]