These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of the oxidation of 3,5,3',5'-tetramethylbenzidine by myeloperoxidase determined by transient- and steady-state kinetics.
    Author: Marquez LA, Dunford HB.
    Journal: Biochemistry; 1997 Aug 05; 36(31):9349-55. PubMed ID: 9235977.
    Abstract:
    Earlier investigations of the oxidation of 3,5,3',5'-tetramethylbenzidine (TMB) using horseradish peroxidase and prostaglandin H-synthase have shown the formation of a cation free radical of TMB in equilibrium with a charge-transfer complex, consistent with either a two- or a one-electron initial oxidation. In this work, we exploited the distinct spectroscopic properties of myeloperoxidase and its oxidized intermediates, compounds I and II, to establish two successive one-electron oxidations of TMB. By employing stopped-flow techniques under transient-state and steady-state conditions, we also determined the rate constants for the elementary steps of the myeloperoxidase-catalyzed oxidation of TMB at pH 5.4 and 20 degrees C. The second-order rate constant for compound I formation from the reaction of native enzyme with H2O2 is 2.6 x 10(7) M-1 s-1. Compound I undergoes a one-electron reduction to compound II in the presence of TMB, and the rate constant for this reaction was determined to be (3.6 +/- 0.1) x 10(6) M-1 s-1. The spectral scans show that compound II accumulates in the steady state. The rate constant for compound II reduction to native enzyme by TMB obtained under steady-state conditions is (9.4 +/- 0.6) x 10(5) M-1 s-1. The results are applied to a new, more accurate assay for myeloperoxidase based upon the formation of the charge-transfer complex between TMB and its diimine final product.
    [Abstract] [Full Text] [Related] [New Search]