These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Replication of M13 single-stranded viral DNA bearing single site-specific adducts by escherichia coli cell extracts: differential efficiency of translesion DNA synthesis for SOS-dependent and SOS-independent lesions. Author: Wang G, Rahman MS, Humayun MZ. Journal: Biochemistry; 1997 Aug 05; 36(31):9486-92. PubMed ID: 9235993. Abstract: In order to characterize mutagenic translesion DNA synthesis in UVM-induced Escherichia coli, we have developed a high-resolution DNA replication system based on E. coli cell extracts and M13 genomic DNA templates bearing mutagenic lesions. The assay is based on the conversion of M13 viral single-stranded DNA (ssDNA) bearing a single site-specific DNA lesion to the double-stranded replicative form (RF) DNA, and permits one to quantitatively measure the efficiency of translesion synthesis. Our data indicate that DNA replication is most strongly inhibited by an abasic site, a classic SOS-dependent noninstructive lesion. In contrast, the efficiency of translesion synthesis across SOS-independent lesions such as O6-methylguanine and DNA uracil is around 90%, very close to the values obtained for control DNA templates. The efficiency of translesion synthesis across 3,N4-ethenocytosine and 1, N6-ethenoadenine is around 20%, a value that is similar to the in vivo efficiency deduced from the effect of the lesions on the survival of transfected M13 ssDNA. Neither DNA polymerase I nor polymerase II appears to be required for the observed translesion DNA synthesis because essentially similar results are obtained with extracts from polA- or polB-defective cells. The close parallels in the efficiency of translesion DNA synthesis in vitro and in vivo for the five site-specific lesions included in this study suggest that the assay may be suitable for modeling mutagenesis in an accessible in vitro environment.[Abstract] [Full Text] [Related] [New Search]