These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effects of intra-accumbens neurotensin on sensorimotor gating. Author: Feifel D, Minor KL, Dulawa S, Swerdlow NR. Journal: Brain Res; 1997 Jun 20; 760(1-2):80-4. PubMed ID: 9237521. Abstract: Neurotensin is a neuropeptide which coexists with mesolimbic dopamine. Previous studies have shown that centrally administered neurotensin can modulate the activity of mesolimbic dopamine with a profile similar to neuroleptics. For example, infusions of neurotensin into the nucleus accumbens inhibit amphetamine-induced hyperlocomotion. Prepulse inhibition (PPI) occurs when a weak prestimulus ('prepulse') inhibits the amplitude of the startle response to an intense stimulus ('pulse'). PPI is an operational measure of sensorimotor gating which is strongly regulated by mesolimbic dopamine. This study examined the effects of various doses of neurotensin infused into the nucleus accumbens of rats on the prepulse inhibition (PPI) of their acoustic startle reflex. Neurotensin (0.25-5.0 microg) was infused into the nucleus accumbens of rats. Animals then received subcutaneous injections of amphetamine (2 mg/kg) or saline and were placed in startle chambers where measures of startle amplitude and PPI were obtained. Neurotensin increased baseline PPI and blocked amphetamine-induced disruption of PPI in a dose-dependent fashion. The lowest dose of neurotensin tested (0.25 microg) significantly increased baseline PPI and both 0.25 and 1.0 microg neurotensin blocked amphetamine-induced decreases in PPI. The 5.0 microg dose of neurotensin had no significant effect on prepulse inhibition. Neurotensin had no effect on the amplitude of the acoustic startle reflex in amphetamine- or saline-treated rats. The results suggest that intra-accumbens neurotensin has a significant, dose-dependent effect on sensorimotor gating in which lower doses (0.25-1.0 microg) exhibit a neuroleptic-like action.[Abstract] [Full Text] [Related] [New Search]