These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Granulocyte-macrophage colony-stimulating factor: presence in human follicular fluid, protein secretion and mRNA expression by ovarian cells.
    Author: Jasper MJ, Brännström M, Olofsson JI, Petrucco OM, Mason H, Robertson SA, Norman RJ.
    Journal: Mol Hum Reprod; 1996 Aug; 2(8):555-62. PubMed ID: 9239667.
    Abstract:
    In recent years it has become evident that a leukocyte-cytokine network contributes to the paracrine regulation of ovarian function. The objectives of this study were to examine the presence of a potent lympho-haemopoietic cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF), in tissues and fluids from human ovaries. In a prospective study, follicular fluid and plasma were collected from naturally cycling women and women undergoing hyperstimulation for in-vitro fertilization (IVF). Granulosa-lutein cells were collected at the time of oocyte recovery for IVF and corpora lutea were collected at the time of hysterectomy for non-ovarian reasons. Culture supernatants from ovarian cell and tissue cultures were harvested on completion of a 48 h incubation. Immunoactive GM-CSF was measured by enzyme-linked immunosorbent assay, and was found to be present at statistically significantly higher levels in follicular fluid (8.9 +/- 0.7 pg/ml) and plasma (11.3 +/- 0.8 pg/ml) of women undergoing hyperstimulation compared to follicular fluid (5.3 +/- 0.3 pg/ml) and plasma (7.1 +/- 0.5 pg/ml) from naturally cycling women. Immunoactive GM-CSF was also detected in culture supernatants of granulosa-lutein cells (47.6 pg/10(5) cells), early luteal phase corpora lutea (0.52 pg/microgram DNA) and mid-luteal phase corpora lutea (0.98 pg/microgram DNA). Furthermore, transcripts for GM-CSF, and both the alpha and beta subunits of the GM-CSF receptor, were detected by reverse transcription polymerase chain reaction (RT-PCR) in granulosa-lutein cell culture preparations and corpora lutea collected during the early, mid- and late luteal phase of the menstrual cycle. These results show that GM-CSF is expressed and secreted by cells within the human ovary, and, together with the finding of expression of mRNA for GM-CSF receptor, suggest a role for GM-CSF in the local regulation of ovarian events.
    [Abstract] [Full Text] [Related] [New Search]