These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Type 2 metabotropic glutamate (mGlu) receptors tonically inhibit transmitter release in rat caudate nucleus: in vivo studies with (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine, a new potent and selective antagonist. Author: Cozzi A, Attucci S, Peruginelli F, Marinozzi M, Luneia R, Pellicciari R, Moroni F. Journal: Eur J Neurosci; 1997 Jul; 9(7):1350-5. PubMed ID: 9240392. Abstract: Anatomical, biochemical and electrophysiological studies have previously shown that cortico-striatal terminals contain abundant presynaptic group 2 metabotropic glutamate (mGlu) receptors. Using brain slices we have previously shown that these receptors inhibit depolarization-induced transmitter release. Using microdialysis in freely moving rats, we now report the effects of group 2 mGlu receptor agonists and antagonists on glutamate concentration in the caudate extracellular fluid. A mild decrease (20-30%) in glutamate concentration in caudate dialysates was observed when 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid or (2S,3S,4S)-alpha-carboxycyclopropyl-glycine (L-CCG-1), mGlu receptor agonists, was locally administered. On the contrary, alpha-methyl-4-carboxyphenylglycine, an antagonist of type 1 and type 2 mGlu receptors, increased the glutamate concentration in dialysates by up to 3.5-fold, and its effects were prevented by the simultaneous administration of L-CCG-1, a preferential type 2 mGlu receptor agonist. A significant increase of glutamate output in striatal dialysate was also found after local administration of (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine, another structurally unrelated, relatively selective and potent type 2 mGlu receptor antagonist. The results suggest that type 2 mGlu receptors tonically inhibit transmitter release from cortico-striatal terminals. Since the cortico-striatal pathway profoundly affects the function of a large percentage of caudate neurons, it is reasonable to predict that the use of selective type 2 mGlu receptor agents will be helpful for scientific and therapeutic studies on the physiopathology of basal ganglion disorders.[Abstract] [Full Text] [Related] [New Search]