These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glycosylation of bile-salt-stimulated lipase from human milk: comparison of native and recombinant forms. Author: Landberg E, Påhlsson P, Krotkiewski H, Strömqvist M, Hansson L, Lundblad A. Journal: Arch Biochem Biophys; 1997 Aug 01; 344(1):94-102. PubMed ID: 9244386. Abstract: Bile-salt-stimulated lipase (BSSL) is an enzyme present in human milk. BSSL is important for fat digestion in infants. It contains one site for N-glycosylation and a serine/threonine-rich domain which is highly O-glycosylated. Both N- and O-linked sugar chains were studied on native BSSL from three donors and compared to the glycosylation of recombinant BSSL produced in Chinese hamster ovary or mouse fibroblast (C-127) cell lines. The carbohydrate composition of oligosaccharides was mapped using sugar and methylation analyses, enzyme-linked immunosorbant assay, and different separation techniques. Native BSSL was found to be highly glycosylated (19-26%). It contained a high amount of fucosylated oligosaccharides and expressed both Lewis a and Lewis b blood group antigens. None of the recombinant BSSL forms contained fucose. N-linked structures on native BSSL were identified as mainly mono- and disialylated biantennary complex type structures with or without fucose substitution. High-pH anion-exchange chromatography analysis indicated that the recombinant forms of BSSL contained similar types of N-glycan structures differing mainly in their content of sialic acid and by the absence of fucose residues. Native BSSL contained predominantly large O-linked oligosaccharides. This was in contrast to the recombinant forms of BSSL which contained mainly short type O-glycans with a high content of sialic acid. Interestingly, the estimated number of O-glycans attached to native BSSL was lower than that for the recombinant forms.[Abstract] [Full Text] [Related] [New Search]