These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Variant mouse lymphoma cells with modified response to interferon demonstrate enhanced immunogenicity.
    Author: Mador N, Falk H, Bergel M, Panet A, Hochman J.
    Journal: Cancer Immunol Immunother; 1997 Jul; 44(5):249-56. PubMed ID: 9247559.
    Abstract:
    We have previously developed an experimental model for the xenogenization of malignant lymphoma. From highly tumorigenic S49 mouse lymphoma cells that proliferate in suspension culture (designated T-25), we selected variant clones that grew as an adherent monolayer (designated T-25-Adh) and were non-tumorigenic in syngeneic mice. Furthermore, priming of syngeneic hosts with T-25-Adh cells protected them against subsequent challenges with the tumorigenic T-25 cells. Several lines of evidence have indicated that antigens of an endogenous mouse mammary tumor virus (MMTV) are involved in the immunogenicity of T-25-Adh cells. Since interferon (IFN) is known to affect retroviral assembly and maturation on the cell membrane, we have studied the effects of IFN on endogenous MMTV-related structures, as well as on the immunogenicity of T-25-Adh cells. We observed that mouse alpha and beta interferons affect the morphogenesis of intracellular MMTV-related precursors in the immunogenic T-25-Adh cells, but not in tumorigenic T-25 cells. From T-25-Adh cells we selected variants that were either high responders or low responders to the above-mentioned interferon effect. The high-response variants were significantly more protective against tumorigenic T-25 cells than the low-response variants. Involvement of MMTV-related antigens in the immune response of the host to T-25-Adh cells was further suggested by immunoelectron-microscopical analysis, demonstrating that antisera from mice, immunized with T-25-Adh cells, interacted specifically with cell-surface MMTV budding particles. These findings indicate a novel method for xenogenization of lymphoma cells by IFN. Since endogenous retroviruses are present in all tissues of the mouse, this approach might be applicable to a wide variety of tumors.
    [Abstract] [Full Text] [Related] [New Search]