These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for increased beta-adrenoreceptor responsiveness induced by 14 days of simulated microgravity in humans. Author: Convertino VA, Polet JL, Engelke KA, Hoffler GW, Lane LD, Blomqvist CG. Journal: Am J Physiol; 1997 Jul; 273(1 Pt 2):R93-9. PubMed ID: 9249537. Abstract: We studied hemodynamic responses to alpha- and beta-receptor agonists in eight healthy men before and after 14 days of 6 degrees head-down tilt (HDT) to test the hypothesis that increased adrenoreceptor responsiveness is induced by prolonged exposure to simulated microgravity. Steady-state infusions of isoproterenol (Iso) at rates of 0.005, 0.01, and 0.02 microgram.kg-1.min-1 were used to assess beta 1- and beta 2-adrenoreceptor responsiveness. Infusions of phenylephrine (PE) at rates of 0.25, 0.50, and 1.00 microgram.kg-1.min-1 were used to assess responsiveness of alpha 1-vascular adrenoreceptors. Slopes calculated from linear regressions between Iso and PE doses and changes in beat-to-beat heart rate, blood pressure, and leg vascular resistance (occlusion plethysmography) for each subject were used as an index of alpha- and beta-adrenoreceptor responsiveness. HDT increased the slopes of heart rate (1,056 +/- 107 to 1,553 +/- 83 beats micrograms-1.kg-1.min-1; P = 0.014) and vasodilation (-469 +/- 111 to -1,446 +/- 309 peripheral resistance units.microgram-1.kg-1.min-1; P = 0.0224) to Iso infusion. There was no alteration in blood pressure or vascular resistance responses to PE infusion after HDT. Our results provide evidence that simulated microgravity causes selective increases in beta 1- and beta 2-adrenoreceptor responsiveness without affecting alpha 1-vascular adrenoreceptor responses.[Abstract] [Full Text] [Related] [New Search]