These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characteristics of renal Na(+)-D-glucose cotransport in the skate (Raja erinacea) and shark (Squalus acanthias). Author: Kipp H, Kinne-Saffran E, Bevan C, Kinne RK. Journal: Am J Physiol; 1997 Jul; 273(1 Pt 2):R134-42. PubMed ID: 9249542. Abstract: We have investigated the properties of the skate (Raja erinacea) and shark (Squalus acanthias) kidney Na(+)-D-glucose cotransporters (SGLT) in uptake studies of radiolabeled substrates into isolated renal brush-border membrane vesicles (BBMV). Scatchard plot analysis of the substrate dependence revealed that the Na(+)-D-glucose cotransporter population is homogenous within each species. Skate BBMV showed a relatively high affinity for D-glucose [Michaelis constant (K(m)) = 0.12 mM] with an apparent coupling ratio of approximately 2 Na+ to 1 D-glucose, whereas the shark transporter was much lower in affinity (K(m) = 1.90 mM) and had a lower coupling ratio, more like 1 Na+ to 1 D-glucose. These characteristics resemble the properties of SGLT1 and SGLT2, which are known to coexist in the mammalian kidney. Inhibitor studies using sugar analogs and glucosides suggested structural differences of the D-glucose binding site among these transporters, whereas the hydrophobic transporter domains in the vicinity of the D-glucose binding site appeared to be similar. In the high-affinity skate system, D-glucose was recognized by hydrogen bonds to the hydroxy groups at C-2, C-3, and C-4 and by hydrophobic interaction with the C-6 methylene group. In contrast, the low-affinity shark system seemed to lack the hydrophobic recognition motif for the C-6 methylene group of D-glucose.[Abstract] [Full Text] [Related] [New Search]