These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Estrogen-nucleic acid adducts: reaction of 3,4-estrone-o-quinone radical anion with deoxyribonucleosides.
    Author: Akanni A, Abul-Hajj YJ.
    Journal: Chem Res Toxicol; 1997 Jul; 10(7):760-6. PubMed ID: 9250409.
    Abstract:
    Metabolic activation of estradiol leading to the formation of catechol estrogens is believed to be a prerequisite for its genotoxic effects. Previous studies have shown that 3,4-estronequinone (3,4-EQ) can redox-cycle and is capable of inducing exclusively single-strand DNA breaks in MCF-7 breast cancer cells [Nutter et al. (1991) J. Biol. Chem. 226, 16380-16386]. These studies, however, could not provide conclusive evidence about the mechanism of estrogen carcinogenesis. In order to explore this in more detail, we have shown previously that 3,4-EQ can react with adenine under electrochemical reductive conditions to yield an estrogen-nucleic acid adduct [Abul-Hajj et al. (1995) J. Am. Chem. Soc. 117, 6144-6145]. In this paper, we report the synthesis and identification of nine estrogen-nucleic acid adducts obtained from reaction of 3,4-EQ with deoxycytidine, deoxythymidine, deoxyadenosine, and deoxyguanosine. Purification of reaction mixtures using HPLC gave sufficient quantities of reaction products for identification using 1H-NMR and mass spectral determinations. Reaction of 3,4-EQ with dCyd, dThd, dAdo, and dGuo gave the following estrogen-nucleic acid adducts: N4-(4-hydroxyestron-1-yl)deoxycytidine, N4-(4-hydroxyestron-2-yl)deoxycytidine, N3-(4-hydroxyestron-1-yl)thymine, N3-(4-hydroxyestron-1-yl)deoxythymidine, N6-(4-hydroxyestron-1-yl)deoxyadenosine, 8-(4-hydroxyestron-1-yl)adenine, N2-(4-hydroxyestron-1-yl)deoxyguanosine, 8-(4-hydroxyestron-1-yl)guanine, and 8-(4-hydroxyestron-2-yl)guanine. Adduction through the NH2 group of dAdo, dGuo, and dCyd results in formation of chemically stable adducts. On the other hand, adduction at C-8 led to the formation of several depurination adducts identified as 4-OHE1-1-C8-Gua, 4-OHE1-2-C8-Gua, and 4-OHE1-1-C8-Ade.
    [Abstract] [Full Text] [Related] [New Search]