These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low extracellular calcium enhances beta cell sensitivity to the stimulatory influence of 1,25-dihydroxyvitamin D3 on insulin release by islets from vitamin D3-deficient rats. Author: Faure-Dussert AG, Delbancut AP, Billaudel BJ. Journal: Steroids; 1997 Jul; 62(7):554-62. PubMed ID: 9253796. Abstract: The beneficial effect of 1,25-dihydroxyvitamin D3 [1,25 (OH)2 D3] on insulin secretion from beta cells in hypocalcemic vitamin D3-deficient rats is now well established. Moreover, few data concerning the mechanism of 1,25 (OH) 2D3 efficiency as a function of the severity of hypocalcemia. In the present experiment, we submitted islets from vitamin D3-deficient rats to in vitro exposure to a range of decreasing extracellular Ca2+ concentrations ([Ca2+]ex), from 0.5 mM to 0.6 mM, during a 6-h 10-8 M 1,25 (OH) 2D3 induction. Thereafter, we compared the effect of this pretreatment on the islets' insulin response to a given stimulus. Various stimuli were used, and we measured in parallel the variations of 86Rb+ and 45Ca2+ efflux and insulin release into the perifusion medium. In the presence of 1,25 (OH) 2D3, we observed an inverse correlation between the [Ca2+]ex pre-exposure and the amplitude of the insulin response to certain stimuli studied, suggesting that beta cells that were pre-exposed to low [Ca2+]ex became more sensitive to the beneficial effect of 1,25 (OH) 2D3 on insulin release. This effect was observed when beta cells were activated by acetylcholine but only during its second phase of stimulation, and more particularly with the barium plus theophylline stimulus. In contrast, insulin release was not affected by [Ca2+]ex pre-exposure during 1,25 (OH) 2D3 induction in response to acetylcholine during its first phase of stimulation, thus excluding any mechanism mediated via nutrient pathways, membrane depolarization, or inositol triphosphate (IP3)-dependent events. Moreover, the islets that were pre-exposed to a 10-fold [Ca2+]ex exhibited only a 50% lower 45Ca2+ content after 45Ca2+ loading, suggesting a different or relatively more efficient storage capacity in the presence of low extracellular calcium. Studies of 45Ca2+ efflux showed that the mobilization of Ca2+ stores induced by a barium plus theophylline stimulus, in the absence of calcium in the perifusion medium, was more efficient in islets pre-exposed to low [Ca2+]ex, whereas the acetylcholine-IP 3-induced mobilization of Ca2+ from reticular stores was not affected. These results generated the hypothesis that 1,25 (OH)2D3 may prepare the beta cells during their pre-exposure to low [Ca2+]ex to become more efficient as concerns insulin release via a more efficient mobilization of 45Ca2+ stores (mitochondrial?) and by an activation of release potentiating systems via protein kinase C protein kinase A pathways.[Abstract] [Full Text] [Related] [New Search]