These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photoperiodic control of gonadotrophin secretion in the ram: a detailed study of the temporal changes in plasma levels of follicle-stimulating hormone, luteinizing hormone and testosterone following an abrupt switch from long to short days. Author: Lincoln GA, Peet MJ. Journal: J Endocrinol; 1977 Sep; 74(3):355-67. PubMed ID: 925567. Abstract: Six adult Soay rams were housed under artificial lighting conditions of long days (16 h light:8 h darkness) for 4 months and this caused the animals to lapse into a state of reproductive quiescence with low levels of gonadotrophins in the circulation and regressed testes secreting very low amounts of testosterone. The photoperiod was changed abruptly to short days (8 h light:16 h darkness) to induce a resurgence of sexual activity, and a detailed study was made of the pituitary and testicular responses over the first 100 days. Plasma levels of LH and FSH first began to increase between days 6 and 12 of short days, and rose progressively until days 33-54 before declining again. Testicular growth of the rams began on days 19-26 and continued for most of the remaining period of study. Plasma testosterone levels rose in parallel with the growth of the testes, and were greatly increased by day 100 when gonadotrophin levels were reduced. At most stages there were short-term fluctuations in the plasma levels of FSH, LH and testosterone indicative of episodic secretion. Peaks in plasma levels of LH were especially conspicuous and from the changes in frequency and amplitude of these peaks it was possible to predict the way in which photoperiod influenced gonadotrophin secretion by its effect on hypothalamic LH-RH secretion. A slight 24 h rhythm in the plasma levels of all three hormones was observed, and the significance of this in relation to the photoperiodic response is discussed.[Abstract] [Full Text] [Related] [New Search]