These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Na/K pump current in guinea pig cardiac myocytes and the effect of Na leak.
    Author: Dobretsov M, Stimers JR.
    Journal: J Cardiovasc Electrophysiol; 1997 Jul; 8(7):758-67. PubMed ID: 9255683.
    Abstract:
    INTRODUCTION: Steady-state Na/K pump current (Ip) in adult guinea pig ventricular myocytes was studied to determine the effect on the Na/K pump of transmembrane Na leak, membrane potential, and pipette Na concentration. METHODS AND RESULTS: Using conventional whole cell, patch clamp techniques, Ip was identified as either Ko-sensitive or ouabain-sensitive current when most other membrane currents were inhibited. Control experiments showed that there were no Ko-sensitive currents other than Ip under the conditions of our experiments. Ip was found to be similar to that reported by others being voltage dependent between -130 and 0 mV and having a half maximal activation by Nai of 28 mM. Ouabain sensitivity was also measured, and it was found that there were two binding sites with the high affinity site comprising 5% to 10% of the total and having an apparent affinity 1000-fold higher than the low affinity site. Apparent affinity of both sites was shifted about 10-fold (higher affinity) by increasing Nai from 10 to 85 mM. When internally perfused with 0 Na solution, Na leak through the membrane was found to be linearly related to Na/K pump activity. In contrast to prior suggestions, Ip was not correlated with series resistance when there was a large transmembrane Na gradient. CONCLUSION: These data suggest that, under conditions of high transmembrane Na gradient, Na leak through the membrane plays a significant role in determining Na/K pump activity.
    [Abstract] [Full Text] [Related] [New Search]