These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preliminary evidence for the evolution in complexity of heart rate dynamics during autonomic maturation in neonatal swine.
    Author: Lipsitz LA, Pincus SM, Morin RJ, Tong S, Eberle LP, Gootman PM.
    Journal: J Auton Nerv Syst; 1997 Jul 14; 65(1):1-9. PubMed ID: 9258866.
    Abstract:
    Previous studies suggest that the autonomic nervous system plays an important role in the generation of complex heart rate dynamics. Therefore, we hypothesized that the complexity (irregularity) of cardiac interbeat intervals would evolve with the maturation of autonomic innervation to the heart. Twelve healthy newborn piglets were implanted with ECG transmitters and studied at one or more different ages up to 33 days of age, the period during which pigs develop functional sympathetic innervation of the heart from the stellate ganglia. Three animals underwent right stellate ganglionectomy, two a left stellate ganglionectomy, two a right cardiac vagotomy and five a sham procedure. The statistic, approximate entropy (ApEn), was used to quantify the regularity of interbeat interval fluctuations. Sham-operated animals showed an increase in the standard deviation (SD) and irregularity (ApEn) of cardiac interval fluctuations with increasing age. Right stellate ganglionectomized piglets had lower interbeat interval ApEn values, but similar SD's by 26-27 days of age compared to sham-operated animals. Left stellate ganglionectomy, which affects cardiac inotropy rather than chronotropy, had no effect on cardiac interval irregularity, while vagotomy had an indeterminant effect. The increasing irregularity of interbeat interval dynamics during autonomic maturation and the apparent attenuation of heartbeat irregularity when right stellate ganglion innervation is interrupted, provides empirical support for the notion that complex heartbeat dynamics in the mature animal are the result of a network of autonomic neural pathways that enables an organism to adapt to stress.
    [Abstract] [Full Text] [Related] [New Search]