These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insulin-like growth factor-I-mediated neurite outgrowth in vitro requires mitogen-activated protein kinase activation.
    Author: Kim B, Leventhal PS, Saltiel AR, Feldman EL.
    Journal: J Biol Chem; 1997 Aug 22; 272(34):21268-73. PubMed ID: 9261137.
    Abstract:
    Insulin-like growth factor-I (IGF-I) induces neuronal differentiation in vitro. In the present study, we examined the signaling pathway underlying IGF-I-mediated neurite outgrowth. In SH-SY5Y human neuroblastoma cells, treatment with IGF-I induced concentration- and time-dependent tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and extracellular signal-regulated protein kinases (ERK) 1 and 2. These effects of IGF-I were blocked by a neutralizing antibody against IGF-IR. Whereas IGF-IR phosphorylation was observed within 1 min, maximal phosphorylation of ERKs was not reached for 30 min. Both IGF-IR and ERK phosphorylation were maintained for at least 24 h. Also, the concentration dependence of IGF-I-stimulated IGF-IR and ERK tyrosine phosphorylation paralleled that of IGF-I-mediated neurite outgrowth. We further examined the role of mitogen-activated protein kinase activation in IGF-I-stimulated neuronal differentiation using the mitogen-activated protein kinase/ERK kinase inhibitor PD98059. Whereas PD98059 had no effect on IGF-IR phosphorylation, PD98059 reduced IGF-I-mediated ERK tyrosine phosphorylation and ERK phosphorylation of the substrate Elk-1. PD98059 also produced a parallel reduction of IGF-I-stimulated neurite outgrowth. Finally, consistent with its ability to block neuronal differentiation, PD98059 inhibited IGF-I-dependent changes of GAP-43 and c-myc gene expression. Together these results suggest that activation of ERKs is essential for IGF-I-stimulated neuronal differentiation.
    [Abstract] [Full Text] [Related] [New Search]