These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential effects of omega-conotoxin GVIA, nimodipine, calmidazolium and KN-62 injected intrathecally on the antinociception induced by beta-endorphin, morphine and [D-Ala2,N-MePhe4,Gly-ol5]-enkephalin administered intracerebroventricularly in the mouse. Author: Suh HW, Song DK, Choi SR, Huh SO, Kim YH. Journal: J Pharmacol Exp Ther; 1997 Aug; 282(2):961-6. PubMed ID: 9262364. Abstract: We previously reported that beta-endorphin and morphine administered supraspinally produce antinociception by activating different descending pain-inhibitory systems. To determine the role of spinal calcium channels, calmodulin and calcium/calmodulin-dependent protein kinase II in the production of antinociception induced by morphine, [D-Ala2,N-MePhe4,Gly-ol5]-enkephalin (DAMGO) or beta-endorphin administered supraspinally, the effects of nimodipine (an L-type calcium channel blocker), omega-conotoxin GVIA (an N-type voltage-dependent calcium channel blocker), calmidazolium (a calmodulin antagonist) or KN-62 (a calcium/calmodulin-dependent protein kinase II inhibitor) injected intrathecally (i.t.) on the antinociception induced by morphine, DAMGO or beta-endorphin administered intracerebroventricularly (i.c.v.) were examined in the present study. Antinociception was assessed by the mouse tail-flick test. The i.t. injection of nimodipine (from 0.024 to 2.4 pmol), omega-conotoxin GVIA (from 0.0033 to 0.33 pmol), calmidazolium (from 0.0015 to 0.15 pmol) or KN-62 (from 0.0014 to 0.14 pmol) alone did not affect the basal tail-flick latencies. The i.t. pretreatment of mice with nimodipine, omega-conotoxin GVIA, calmidazolium or KN-62 dose dependently attenuated the inhibition of the tail-flick response induced by beta-endorphin administered i.c.v. However, the inhibition of the tail-flick response induced by morphine or DAMGO administered i.c.v. was not changed by i.t. pretreatment with nimodipine, omega-conotoxin GVIA, calmidazolium or KN-62. The results suggest that spinally located L- and N-type calcium channels, calmodulin and calcium/calmodulin-dependent protein kinase II may be involved in the modulation of antinociception induced by beta-endorphin, but not morphine and DAMGO, administered supraspinally.[Abstract] [Full Text] [Related] [New Search]