These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative dose-dependence study of FK506 and cyclosporin A on the rate of axonal regeneration in the rat sciatic nerve.
    Author: Wang MS, Zeleny-Pooley M, Gold BG.
    Journal: J Pharmacol Exp Ther; 1997 Aug; 282(2):1084-93. PubMed ID: 9262378.
    Abstract:
    The new immunosuppressant drug FK506 (Tacrolimus) increases the rate of nerve regeneration in vivo (Gold et al., 1994; Gold et al., 1995). In the present study, we have examined the dose-dependence of FK506's ability to enhance nerve regeneration. In the first set of experiments, rats received daily s.c. injections of FK506 (2 mg/kg, 5 mg/kg or 10 mg/kg) for 18 days after a sciatic nerve crush injury. Signs of functional recovery in the hind feet appeared earlier than in saline-treated control rats at all three FK506 dosage; recovery was maximally accelerated in the 5-mg/kg group. Light microscopy at 18 days after nerve crush revealed more regenerating myelinated fibers in FK506-treated rats than in controls; this was most apparent in the 5-mg/kg group. Morphometric analysis of axonal areas in the soleus nerve confirmed that axonal calibers were maximally increased in the 5-mg/kg group. In the second set of experiments, the rate of axonal regeneration was determined by radiolabeling the L5 dorsal root ganglion. Regeneration rate for sensory axons was maximally increased (by 34%) in the 5-mg/kg group. In contrast, cyclosporin A (10 or 50 mg/kg; dosages were selected on the basis of the 1/10 lower potency of cyclosporin A) did not significantly alter the rate of axonal regeneration. Cyclosporin A (50 mg/kg) also failed to increase functional recovery or axonal calibers in the soleus nerve. Because the two drugs share a common mechanism for producing immunosuppression (i.e., calcineurin inhibition), these results indicate that FK506's nerve regenerative property involves a distinct, calcineurin-independent mechanism.
    [Abstract] [Full Text] [Related] [New Search]