These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conformational studies of mono- and bicyclic parathyroid hormone-related protein-derived agonists.
    Author: Mierke DF, Maretto S, Schievano E, DeLuca D, Bisello A, Mammi S, Rosenblatt M, Peggion E, Chorev M.
    Journal: Biochemistry; 1997 Aug 26; 36(34):10372-83. PubMed ID: 9265617.
    Abstract:
    Parathyroid hormone-related protein (PTHrP) is expressed in a wide variety of cells where it acts as an autocrine and/or paracrine factor involved in regulation of cellular growth, differentiation, and embryonic development. It may also play a physiological endocrine role in calcium transport across the placenta or during lactation. The N-terminal portion, PTHrP-(1-34), retains all the calciotropic parathyroid hormone-like activity and is a lead structure for the design of novel, bone anabolic agents for the treatment of bone disorders such as osteoporosis. To characterize the putative bioactive conformation, we have carried out a detailed structural analysis of a series of three conformationally constrained PTHrP-(1-34)-based mono- and bicyclic lactam-containing biologically active analogs: (III) The conformational properties were studied by circular dichroisim, nuclear magnetic resonance spectroscopy, distance geometry calculations, and molecular dynamic simulations in water/trifluoroethanol (TFE) mixtures. The helical content in water of both monocyclic analogs I and II is approximately 22%; that of the bicyclic analog III is approximately 40%. In 30% TFE, all analogs reached a maximal helical content of 80%, corresponding to 26 or 27 residues out of 34 in a helical conformation. High-resolution structures obtained with 50:50 TFE/water revealed that all three analogs display two helical domains and a hinge region around Gly12-Lys13. The highly potent mono- and bicyclic agonists I and III display a second hinge around Arg19-Arg20 which is shifted to Ser14-Asp17 in the weakly potent monocyclic agonist II. We suggest that the presence and localization of discrete hinges in the sequence together with the high propensity for helicity of the C-terminal sequence and the enhancement of helical nucleation at the N-terminal sequence are essential for generating a PTH/PTHrP receptor-compatible bioactive conformation.
    [Abstract] [Full Text] [Related] [New Search]