These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolic and calorigenic effects of dopexamine in healthy volunteers.
    Author: Geisser W, Träger K, Hähn A, Georgieff M, Ensinger H.
    Journal: Crit Care Med; 1997 Aug; 25(8):1332-7. PubMed ID: 9267946.
    Abstract:
    OBJECTIVE: To evaluate metabolic and calorigenic effects of dopexamine in healthy volunteers. DESIGN: Prospective, randomized trial. SETTING: Laboratory of the University Department of Anesthesiology. SUBJECTS: Eight volunteers. INTERVENTIONS: After a control period, dopexamine was administered using four infusion rates (0.75, 1.5, 3.0, and 6.0 microg/kg/min). MEASUREMENTS AND MAIN RESULTS: Blood pressure, heart rate, oxygen consumption (VO2), and the plasma concentration of potassium, glucose, lactate, and norepinephrine were measured. Typical hemodynamic responses were seen. VO2 increased from 122 +/- 11 (SD) to 150 +/- 9 mL/min/m2 during the highest dopexamine infusion rate. Plasma potassium concentration decreased only during the highest infusion rate. Plasma glucose concentration increased during infusion rates of 3 and 6 microg/kg/min of dopexamine, from 90 +/- 5 to 99 +/- 5 mg/dL (5.0 +/- 0.3 to 5.5 +/- 0.3 mmol/L), and from 87 +/- 7 to 103 +/- 11 mg/dL (4.8 +/- 0.4 to 5.7 +/- 0.6 mmol/L), respectively. Lactate did not increase during dopexamine infusion. Plasma norepinephrine concentration increased during all four infusion rates. CONCLUSION: It was not possible to differentiate the adrenergic receptor subtype responsible for the calorigenic and metabolic effects, since the putative beta2 adrenergic-receptor agonist, dopexamine, caused an increase in the plasma concentration of the beta1 adrenergic-receptor agonist, norepinephrine. Since beta2 adrenergic receptor-mediated effects such as hypokalemia were found only at infusion rates > or = 3 microg/kg/min, the effects of dopexamine at infusion rates < 3 microg/kg/min may be mainly mediated by stimulation of dopaminergic receptors and the indirect sympathomimetic action.
    [Abstract] [Full Text] [Related] [New Search]