These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential utilization of ShcA tyrosine residues and functional domains in the transduction of epidermal growth factor-induced mitogen-activated protein kinase activation in 293T cells and nerve growth factor-induced neurite outgrowth in PC12 cells. Identification of a new Grb2.Sos1 binding site. Author: Thomas D, Bradshaw RA. Journal: J Biol Chem; 1997 Aug 29; 272(35):22293-9. PubMed ID: 9268379. Abstract: By transient expression of both truncated forms of p52(SHCA) and those with point mutations in 293T cells, it has been shown that, in addition to Tyr-317, Tyr-239/240 is a major site of phosphorylation that serves as a docking site for Grb2.Sos1 complexes. In addition, analysis of epidermal growth factor (EGF)-induced activation of mitogen-activated protein kinase in 293T cells showed that the overexpression Shc SH2 or phosphotyrosine binding (PTB) domains of ShcA alone has a more potent negative effect than the overexpression of the forms of ShcA lacking Tyr-317 or Tyr 239/240 or both. In transiently transfected PC12 cells, the ShcA PTB domain and tyrosine phosphorylation in the CH1 domain, especially on Tyr-239/240, are crucial for mediating nerve growth factor (NGF)-induced neurite outgrowth. These findings suggest that the EGF and NGF (TrkA) receptor can utilize Shc in different ways to promote their activity. For EGF-induced mitogen-activated protein kinase activation in 293T cells, both Shc PTB and SH2 domains are essential for optimal activation, indicating that a mechanism independent of Grb2 engagement with Shc may exist. For NGF-induced neurite outgrowth in PC12 cells, Shc PTB plays an essential role, and phosphorylation on Tyr-239/240, but not on Tyr-317, is required.[Abstract] [Full Text] [Related] [New Search]