These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Postischemic infusion of Cu/Zn superoxide dismutase or SOD:Tet451 reduces cerebral infarction following focal ischemia/reperfusion in rats.
    Author: Francis JW, Ren J, Warren L, Brown RH, Finklestein SP.
    Journal: Exp Neurol; 1997 Aug; 146(2):435-43. PubMed ID: 9270054.
    Abstract:
    Oxygen-free radicals play a major role in neuronal cell injury following cerebral ischemia/reperfusion. The free-radical scavenging enzyme, Cu/Zn superoxide dismutase (SOD-1), ameliorates various types of brain injury resulting from temporary CNS ischemia. We have compared the cerebroprotective properties of human SOD-1 (hSOD-1) with a novel recombinant SOD-1 hybrid protein, SOD:Tet451, composed of hSOD-1 linked to the neuronal binding fragment of tetanus toxin (TTxC). Following 2 h of temporary middle cerebral artery occlusion, rats infused with equivalent activities of either hSOD-1 or SOD:Tet451 for the initial 3 h of reperfusion showed reductions in cerebral infarct volume of 43 and 57%, respectively, compared to saline-treated controls (P < 0.01). Serum hSOD-1 concentrations in rats receiving SOD:Tet451 were seven-fold higher than those in rats receiving the native enzyme. Animals treated with SOD:Tet451 also demonstrated an extended persistence of hSOD-1 in the bloodstream during drug washout as compared to animals given free enzyme. Immunohistochemical examination of brain sections from an SOD:Tet451-treated ischemic rat showed positive immunoreactivity in the ipsilateral cerebral cortex using either anti-TTxC or anti-human SOD-1 antibodies. Our results document that both hSOD-1 and SOD:Tet451 significantly reduce brain infarct volume in a model of transient focal ischemia/reperfusion in rats. Additionally, our findings suggest that the cerebroprotective effects of SOD-1 may be enhanced by neuronal targeting as seen with the hybrid protein SOD:Tet451.
    [Abstract] [Full Text] [Related] [New Search]