These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Environmental effects on fish immune mechanisms.
    Author: Bly JE, Quiniou SM, Clem LW.
    Journal: Dev Biol Stand; 1997; 90():33-43. PubMed ID: 9270832.
    Abstract:
    Environmental stress factors which influence fish immune (and likely many other physiological) functions can be divided into two broad, but not mutually exclusive, categories, namely those which occur naturally and those which are artificial. Natural environmental stress factors include season, temperature, salinity and photoperiod as well as social stress factors such as crowding and hierarchy. In general, artificial environmental stress factors are man made, and mainly involve pollutants such as acid rain, heavy metals and organic compounds. The available data indicate that regardless of which immune parameters are assessed, both natural and artificial environmental stress factors appear to suppress immune functions. Of the numerous environmental stress factors considered, pollutants, handling/confinement and low temperature are probably the best studied forms in fish. All three forms of stress factors have been shown to suppress components of both the innate (non-specific) and adaptive arms of the immune system. Since immune responses which protect against invading pathogens frequently involve interactions between both the innate and adaptive arms of the immune system, it seems reasonable to conclude that either acute or chronic exposure to stress factors may predispose fish to infectious diseases. Signalling mechanisms responsible for the effects of these various stress factors on immunity in fish are poorly understood, although elevated serum ACTH and cortisol levels appear to be involved in some cases. A better understanding of the mechanism(s) resulting in immunosuppression should facilitate future in vivo manipulations to reduce susceptibility to disease in aquaculture situations.
    [Abstract] [Full Text] [Related] [New Search]