These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional role of a distal (3'-phosphate) group of CoA in the recombinant human liver medium-chain acyl-CoA dehydrogenase-catalysed reaction. Author: Peterson KL, Srivastava DK. Journal: Biochem J; 1997 Aug 01; 325 ( Pt 3)(Pt 3):751-60. PubMed ID: 9271097. Abstract: The X-ray crystallographic structure of medium-chain acyl-CoA dehydrogenase (MCAD)-octenoyl-CoA complex reveals that the 3'-phosphate group of CoA is confined to the exterior of the protein structure [approx. 15 A (1.5 nm) away from the enzyme active site], and is fully exposed to the outside solvent environment. To ascertain whether such a distal (3'-phosphate) fragment of CoA plays any significant role in the enzyme catalysis, we investigated the recombinant human liver MCAD (HMCAD)-catalysed reaction by using normal (phospho) and 3'-phosphate-truncated (dephospho) forms of octanoyl-CoA and butyryl-CoA substrates. The steady-state kinetic data revealed that deletion of the 3'-phosphate group from octanoyl-CoA substrate increased the turnover rate of the enzyme to about one-quarter, whereas that from butyryl-CoA substrate decreased the turnover rate of the enzyme to about one-fifth; the Km values of both these substrates were increased by 5-10-fold on deletion of the 3'-phosphate group from the corresponding acyl-CoA substrates. The transient kinetics for the reductive half-reaction, oxidative half-reaction and the dissociation 'off-rate' (of the reaction product from the oxidized enzyme site) were all found to be affected by deletions of the 3'-phosphate group from octanoyl-CoA and butyryl-CoA substrates. A cumulative account of these results reveals that, although the 3'-phosphate group of acyl-CoA substrates might seem 'useless' on the basis of the structural data, it has an essential functional role during HMCAD catalysis.[Abstract] [Full Text] [Related] [New Search]