These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Partial activation of the factor VIIIa-factor IXa enzyme complex by dihexanoic phosphatidylserine at submicellar concentrations. Author: Gilbert GE, Arena AA. Journal: Biochemistry; 1997 Sep 02; 36(35):10768-76. PubMed ID: 9271508. Abstract: Phosphatidylserine (PS)-containing membranes increase the kcat of the factor VIIIa-factor IXa enzyme complex by more than 1000-fold. While PS supports specific, high-affinity membrane binding of factor VIIIa and factor IXa, it is not known whether PS is the lipid that activates the membrane-bound complex. It is also not known whether PS or other activating lipids must reside in the two-dimensional membrane matrix for efficacy. We have found that submicellar concentrations of dihexanoic phosphatidylserine (C6PS) increase the activity of the factor VIIIa-factor IXa complex in a biphasic manner with half-maximal concentrations of 0.2 and 1.6 mM while the micelle-forming concentration is 4.0 mM. Increased cleavage of factor X at 0.25 mM C6PS was due to a 25-fold enhancement of the kcat and a 30-fold increase in the affinity of factor VIIIa for factor IXa. C6 phosphatidylethanolamine and C6 phosphatidic acid, but not C6 phosphatidylcholine, also accelerated the Xase complex, indicating that kcat enhancement has less structural specificity than membrane binding. Submicellar C6PS enhanced activity of factor IXa in the absence of factor VIIIa, but the effect was due to a decreased KM rather than an increased kcat. These results suggest that activation of the factor VIIIa-factor IXa complex can result from binding of individual C6PS molecules or small aggregates in the absence of a membrane bilayer. They provide a model system in which the phospholipid-induced activation may be distinguished from membrane-binding of the enzyme complex.[Abstract] [Full Text] [Related] [New Search]