These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prevention of diet-induced obesity in transgenic mice overexpressing skeletal muscle lipoprotein lipase. Author: Jensen DR, Schlaepfer IR, Morin CL, Pennington DS, Marcell T, Ammon SM, Gutierrez-Hartmann A, Eckel RH. Journal: Am J Physiol; 1997 Aug; 273(2 Pt 2):R683-9. PubMed ID: 9277555. Abstract: Transgenic (Tg) FVB/N mice were produced that overexpress human lipoprotein lipase (LPL) in skeletal muscle using the muscle creatine kinase promoter and enhancers. It was hypothesized that, by overexpressing LPL in muscle, high fat feeding-induced obesity would be prevented by diverting lipoprotein-derived triglyceride fatty acids away from storage in adipose tissue to oxidation in muscle. Mice were examined both at 6 wk of age before high fat (HF) feeding and at 19 wk of age after 13 wk of HF (46.1% fat) or high carbohydrate (HC) feeding (11.5% fat). At 6 wk in heterozygous Tg mice, LPL was increased 11-fold in white muscle and 2.5-fold in red muscle, but not in cardiac muscle or spleen, brain, lung, kidney, or adipose tissue. Plasma triglycerides (mg/dl) were lower in Tg mice (87 +/- 7 vs. 117 +/- 7, P < 0.0001), and glucose increased (201 +/- 9 vs. 167 +/- 8 mg/dl, P = 0.029). There were no differences in body weight between Tg and nontransgenic (nTg) mice; however, carcass lipid content (% body wt) was significantly decreased in male Tg mice at 6 wk (7.5 +/- 1.0 vs. 9.0 +/- 1.0%, P = 0.035). Body composition was not different in female Tg mice at 6 wk. Overall, when Tg mice were fed either a HC or HF diet for 13 wk, plasma triglycerides (P < 0.001) and free fatty acids (P < 0.001) were decreased, whereas plasma glucose (P = 0.01) and insulin (P = 0.05) were increased compared with nTg mice. HF feeding increased carcass lipid content twofold in both male (10.3 +/- 1.1 vs. 21.4 +/- 2.6%, HC vs. HF, P < 0.001) and female nTg mice (6.7 +/- 0.9 vs. 12.9 +/- 1.8%, P = 0.01). However, the targeted overexpression of LPL in skeletal muscle prevented HF diet-induced lipid accumulation in both Tg male (10.2 +/- 0.7 vs. 13.5 +/- 2.2%, HC vs. HF, P = NS) and female Tg mice (6.8 +/- 0.6 vs. 10.1 +/- 1.4%, P = NS). The potential to increase LPL activity in muscle by gene or drug delivery may prove to be an effective tool in preventing and/or treating obesity in humans.[Abstract] [Full Text] [Related] [New Search]