These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence for ligand-dependent intramolecular folding of the AF-2 domain in vitamin D receptor-activated transcription and coactivator interaction.
    Author: Masuyama H, Brownfield CM, St-Arnaud R, MacDonald PN.
    Journal: Mol Endocrinol; 1997 Sep; 11(10):1507-17. PubMed ID: 9280066.
    Abstract:
    A ligand-dependent transcriptional activation domain (AF-2) exists in region E of the nuclear receptors. This highly conserved domain may contact several coactivators that are putatively involved in nuclear receptor-mediated transcription. In this study, a panel of vitamin D receptor (VDR) AF-2 mutants was created to examine the importance of several conserved residues in VDR-activated transcription. Two AF-2 mutants (L417S and E420Q) exhibited normal ligand binding, heterodimerization with retinoid X receptor, and vitamin D-responsive element interaction, but they were transcriptionally inactive in a VDR-responsive reporter gene assay. All AF-2 mutations that abolished VDR-mediated transactivation also eliminated interactions between VDR and several putative coactivator proteins including suppressor of gal1 (SUG1), steroid hormone receptor coactivator-1 (SRC-1), or receptor interacting protein (RIP140), suggesting that coactivator interaction is important for AF-2-mediated transcription. In support of this concept, the minimal AF-2 domain [VDR(408-427)] fused to the gal4 DNA binding domain was sufficient to mediate transactivation as well as interaction with putative coactivators. Introducing the L417S and E420Q mutations into the minimal AF-2 domain abolished this autonomous transactivation and coactivator interactions. Finally, we demonstrate that the minimal AF-2 domain interacted with an AF-2 deletion mutant of the VDR in a 1,25-(OH)2D3-dependent manner, suggesting a ligand-induced intramolecular folding of the VDR AF-2 domain. The L417S mutant of this domain disrupted the interaction with VDR ligand-binding domain, while the E420Q mutant did not affect this interaction. These studies suggest that the conserved AF-2 motif may mediate transactivation through ligand-dependent intermolecular interaction with coactivators and through ligand-induced intramolecular contacts with the VDR ligand-binding domain itself.
    [Abstract] [Full Text] [Related] [New Search]