These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A kinetically active site in the C-lobe of human transferrin.
    Author: Zak O, Tam B, MacGillivray RT, Aisen P.
    Journal: Biochemistry; 1997 Sep 09; 36(36):11036-43. PubMed ID: 9283096.
    Abstract:
    Release of iron from transferrin, the iron-transporting protein of the circulation, is a concerted process involving remote amino acid residues as well as those at the two specific iron-binding sites of the protein. Previous studies of fluoresceinated transferrin have suggested Lys 569 as a kinetically active site in the C-terminal lobe of the protein. We have therefore turned to site-directed mutagenesis to investigate the role of Lys 569 in the release process at pH 5.6, the pH of the endosome where iron is transferred from transferrin to the iron-dependent cell. Mutation of positively charged Lys 569 to an uncharged Gln results in a protein in which release of iron from the mutated lobe to pyrophosphate is slowed by a factor of 15-20 and in which release kinetics switch from a complex saturation-linear to a simple saturation function. Acceleration of release by chloride is also substantially less than in native transferrin. When Lys 569 is replaced by a positively charged Arg, in contrast, observed release rates and chloride dependence are close to those of the native protein. The mechanism of release from the C-lobe site therefore appears to be sensitive to positive charge at position 569. Binding of chloride or other simple anion accelerates and is essential for release from the C-lobe; a muted response of K569Q to chloride concentration suggests that Lys 569 may function as a kinetically active anion-binding residue in the C-lobe. Despite the kinetic effects of the K569 mutation on iron release, rates of iron uptake by K562 cells from the C-lobes of native, K569Q, and K569R proteins are almost identical. In contrast to the C-lobe, iron release from the N-lobe is insensitive to charge at residue 233, the site in that lobe homologous to residue 569, with chloride retarding rather than accelerating release. K233, therefore, is not a kinetically active anion-binding site in the N-lobe. Release mechanisms differ substantially in the two lobes of transferrin despite the identity of ligands and their nearly identical arrangements in the lobes.
    [Abstract] [Full Text] [Related] [New Search]