These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glutamate-119 of the large alpha-subunit is the catalytic base in the hydration of 2-trans-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli. Author: He XY, Yang SY. Journal: Biochemistry; 1997 Sep 09; 36(36):11044-9. PubMed ID: 9283097. Abstract: Glu139 of the large alpha-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli was identified as the catalytic residue of enoyl-CoA hydratase [Yang, S.-Y., He, X.-Y., & Schulz, H. (1995) Biochemistry 34, 6441-6447]. To determine whether any of the other conserved protic residues is directly involved in the hydratase catalysis, the multienzyme complexes with either an alpha/Asp69 --> Asn or an alpha/Glu119 --> Gln mutation were overproduced and characterized. The catalytic properties of 3-ketoacyl-CoA thiolase and l-3-hydroxyacyl-CoA dehydrogenase of the mutant complexes were almost unaffected. The amidation of Asp69 and Glu119 caused a 7.6- and 88-fold decrease, respectively, in the kcat of enoyl-CoA hydratase without a significant change in the Km value of the hydratase as well as a 5.9- and 62-fold increase, respectively, in the Km of Delta3-cis-Delta2-trans-enoyl-CoA isomerase with a very small decrease in the kcat of the latter enzyme. The data suggest that the carboxyl group of Glu119 is particularly important to the catalytic activity of enoyl-CoA hydratase. Furthermore, the wild-type hydratase shows a bell-shaped pH dependence of the kcat/Km with pKa values of 5.9 and 9.2, whereas the Glu119 --> Gln mutant hydratase has only a single pKa of 9.5. A simple explanation for these observations is that a deprotonated Glu119 and a protonated Glu139 are required for the high kcat of the enoyl-CoA hydratase. The results of site-directed mutagenesis studies, together with the structural information about the spatial arrangement of two conserved glutamate residues of rat liver enoyl-CoA hydratase [Engel, C. K., Mathieu, M., Zeelen, J. P., Hiltunen, J. K., and Wierenga, R. K. (1996) EMBO J. 15, 5135-5145] to which Glu119 and Glu139 of the large alpha-subunit correspond, lead to the conclusion that the gamma-carboxyl group of Glu119 serves as the second general acid-base functional group in catalyzing the hydration of 2-trans-enoyl-CoA.[Abstract] [Full Text] [Related] [New Search]