These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lactation-induced plasticity in the supraoptic nucleus augments axodendritic and axosomatic GABAergic and glutamatergic synapses: an ultrastructural analysis using the disector method.
    Author: El Majdoubi M, Poulain DA, Theodosis DT.
    Journal: Neuroscience; 1997 Oct; 80(4):1137-47. PubMed ID: 9284066.
    Abstract:
    The disector, an unbiased stereological method for evaluation of synaptic densities, was used to analyse putative GABA and glutamate innervations of the supraoptic nucleus of virgin and lactating rats. The analysis was performed on ultrathin sections labelled for either of the amino acids with a postembedding immunogold technique. Our observations showed that the volume of the nucleus increased by 40% in lactating animals, an increase due to a significant enlargement of dendritic and somatic, but not vascular, volumes. Nevertheless, values of overall synaptic densities in the whole nucleus remained as high as those in virgin rats (37-40 x l0(6) synapses/mm3). About 45% of all synapses were immunoreactive for GABA and 25% for glutamate; there were twice as many GABA- and glutamate-positive synapses on dendrites as on somata. When we estimated synaptic densities in relation to the neuropil (by subtracting the proportion of sampled areas occupied by somatic profiles), we found a significant increase in synaptic density in lactating animals. This affected axodendritic as well as axosomatic synapses, immunopositive and immunonegative for GABA or glutamate. The disector also allowed us to determine that the number of synapses from terminals making contacts on several somata and/or dendrites simultaneously constituted about 9% of all synapses in virgin rats, a proportion which more than doubled in lactating rats. About 50% were immunopositive for GABA and 30% for glutamate. Our data offer further evidence of physiologically-linked structural synaptic plasticity in the supraoptic nucleus and clearly demonstrate that it affects both inhibitory and excitatory inputs on dendrites, as well as on somata, throughout the nucleus.
    [Abstract] [Full Text] [Related] [New Search]