These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Caffeine-induced contractions in developing rabbit heart.
    Author: Miller MS, Friedman WF, Wetzel GT.
    Journal: Pediatr Res; 1997 Sep; 42(3):287-92. PubMed ID: 9284267.
    Abstract:
    Mature myocardium utilizes calcium released by the sarcoplasmic reticulum (SR) for cell contraction. Transient exposure of mature myocytes to caffeine is known to directly trigger Ca2+ release from the SR. In contrast, neonatal rabbit heart cells rely on transsarcolemmal Ca2+ influx for tension generation. SR function is decreased in immature heart and appears to play a minimal role as a calcium source. Accordingly, we hypothesized that neonatal rabbit myocytes would not respond to a caffeine pulse. Isolated neonatal and adult myocytes were paced to load the SR with calcium and then exposed to a 1-s pulse of 10 mM caffeine. As previously described, adult myocytes exhibited a brisk contraction in response to caffeine. Unexpectedly, neonatal myocytes also exhibited a similar, brisk response. These caffeine-induced contractions were not dependent on extracellular Ca2+ but were dependent upon the loading of SR Ca2+ stores. When SR Ca2+ stores were depleted by exposure to caffeine, mature myocytes exhibited only small, slow contractions in response to electrical field stimulation. Replenishing the SR Ca2+ stores resulted in normal, brisk contractions. In contrast, electrically stimulated contractions in immature myocytes were largely unaffected by caffeine-induced SR depletion. Thus, although neonatal myocytes are capable of loading and releasing calcium from the SR, such SR calcium release is not normally required for contraction in the developing heart. The minor role of SR Ca2+ release in immature rabbit heart may not result from immaturity of the SR, but rather from an inadequate mechanism to trigger SR calcium release.
    [Abstract] [Full Text] [Related] [New Search]