These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide induces transient Ca2+ changes in endothelial cells independent of cGMP.
    Author: Volk T, Mäding K, Hensel M, Kox WJ.
    Journal: J Cell Physiol; 1997 Sep; 172(3):296-305. PubMed ID: 9284949.
    Abstract:
    Ca2+ changes induced by nitric oxide (NO.) were investigated in cultured human endothelial cells. Sodium nitroprusside (SNP) (1-100 mumol/L) and S-Nitroso-N-acetylpenicillamine (SNAP) (100 mumol/L) were used as NO. donors. The cytoplasmatic Ca2+ concentration was calculated using ratiometric FURA2 fluorescence measurements. Both NO. donors caused transient oscillatory Ca2+ changes, which were not detectable in the presence of oxyhemoglobin (50 mumol/L). Digital ratio imaging revealed initiation sites within cells where Ca2+ increases started spreading, which indicates that nonuniformly distributed targets might be involved in these reactions. Calcium was released from intracellular stores as indicated by experiments performed in Ca(2+)-free buffer. L-type Ca(2+)-channel blocker diltiazem (100 mumol/L) was not able to block these responses. NO.-induced Ca2+ release from intracellular stores caused capacitative Ca2+ entry. Both thapsigargin (1 mumol/L) and cyclopiazonic acid (10 mumol/L) inhibited the SNP response completely, whereas neither ryanodine (up to 100 mumol/L) nor dantrolene (100 mumol/L) was able to inhibit Ca2+ changes induced by SNP, indicating that primarily inositol 1,4,5-triphosphate (IP3)-dependent stores are released upon stimulation with NO.. A small inhibitory effect of ATP- and SNP-induced peak [Ca2+]i increase was measured in the presence of both caffeine (20 mmol/L) and procaine (1 mmol/L). Evidence is presented that cGMP is not involved in NO.-induced Ca2+ signals, as neither inhibitors of guanylate cyclase (methylene blue and LY 83583) nor cell permeant analogues of cGMP altered or simulated [Ca2+] changes. An inhibitor of cGMP-dependent protein kinase was also ineffective. We therefore propose that endothelial cells have specific targets proximal or at IP3 receptors to induce Ca2+ changes in endothelial cells stimulated with NO..
    [Abstract] [Full Text] [Related] [New Search]