These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A fragment liberated from the Escherichia coli CheA kinase that blocks stimulatory, but not inhibitory, chemoreceptor signaling. Author: Morrison TB, Parkinson JS. Journal: J Bacteriol; 1997 Sep; 179(17):5543-50. PubMed ID: 9287011. Abstract: CheA, a cytoplasmic histidine autokinase, in conjunction with the CheW coupling protein, forms stable ternary complexes with the cytoplasmic signaling domains of transmembrane chemoreceptors. These signaling complexes induce chemotactic movements by stimulating or inhibiting CheA autophosphorylation activity in response to chemoeffector stimuli. To explore the mechanisms of CheA control by chemoreceptor signaling complexes, we examined the ability of various CheA fragments to interfere with receptor coupling control of CheA. CheA[250-654], a fragment carrying the catalytic domain and an adjacent C-terminal segment previously implicated in stimulatory control of CheA activity, interfered with the production of clockwise flagellar rotation and with chemotactic ability in wild-type cells. Epistasis tests indicated that CheA[250-654] blocked clockwise rotation by disrupting stimulatory coupling of CheA to receptors. In vitro coupling assays confirmed that a stoichiometric excess of CheA[250-654] fragments could exclude CheA from stimulatory receptor complexes, most likely by competing for CheW binding. However, CheA[250-654] fragments, even in vast excess, did not block receptor-mediated inhibition of CheA, suggesting that CheA[250-654] lacks an inhibitory contact site present in native CheA. This inhibitory target is most likely in the N-terminal P1 domain, which contains His-48, the site of autophosphorylation. These findings suggest a simple allosteric model of CheA control by ternary signaling complexes in which the receptor signaling domain conformationally regulates the interaction between the substrate and catalytic domains of CheA.[Abstract] [Full Text] [Related] [New Search]