These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microfilament depletion and circumvention of multiple drug resistance by sphinxolides. Author: Zhang X, Minale L, Zampella A, Smith CD. Journal: Cancer Res; 1997 Sep 01; 57(17):3751-8. PubMed ID: 9288783. Abstract: Sphinxolides, a newly described family of cytotoxins from the New Caledonian sponge Neosiphonia superstes, bear structural resemblance to scytophycins. We now demonstrate that the cytotoxicity of sphinxolides is associated with cell cycle arrest in G2-M and induction of apoptosis. Like scytophycins and cytochalasins, sphinxolides caused rapid loss of microfilaments in cultured cells, without affecting microtubule organization. Microfilament reassembly was very slow after removal of the sphinxolide, consistent with the slow recovery of cellular proliferation. Sphinxolides potently inhibited actin polymerization in vitro and the microfilament-dependent ATPase activity of purified actomyosin, indicating a direct effect on actin. Importantly, sphinxolides were equally cytotoxic toward MCF-7 human breast carcinoma cells and a subline which overexpresses P-glycoprotein (MCF-7/ADR). Similarly, overexpression of the multidrug resistance-associated protein MRP by HL-60 cells did not confer resistance to the sphinxolides. These studies demonstrate that sphinxolides are potent new antimicrofilament compounds that circumvent multidrug resistance mediated by overexpression of either P-glycoprotein or MRP. Therefore, these agents may be useful in the treatment of drug-resistant tumors.[Abstract] [Full Text] [Related] [New Search]