These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Author: Kremer C, Breier G, Risau W, Plate KH. Journal: Cancer Res; 1997 Sep 01; 57(17):3852-9. PubMed ID: 9288799. Abstract: Vascular endothelial growth factor (VEGF) and its tyrosine kinase receptors VEGFR-1 (flt-1) and VEGFR-2 (flk-1/KDR) are key mediators of physiological and pathological angiogenesis. They are expressed in most tissues during embryonic development but are down-regulated in the adult, when angiogenesis ceases. Up-regulation of VEGFR-2 and of VEGF are observed in many pathological conditions under which angiogenesis is reinduced. A major regulator of VEGF expression is hypoxia. Although the temporal expression pattern of VEGFR-2 parallels VEGF expression to a high extent, little is known about its regulation. Here, we show that VEGFR-2 is highly expressed in early postnatal mouse brain but is down-regulated commencing at postnatal day 15 (P15) of mouse brain development and is hardly detectable in P30 mouse brain. Using P30 mouse brain slices, we observed that hypoxia up-regulates VEGFR-2 in the slices but not in human umbilical vein endothelial cells, suggesting the presence of a hypoxia-inducible factor in the murine neuroectoderm that up-regulates VEGFR-2. To identify the factors involved, normoxic P30 cerebral slices were cultured with growth factors that are either hypoxia-inducible (e.g., PDGF-BB, erythropoietin, and VEGF) and/or are known to act on endothelial cells (e.g., PDGF-BB, VEGF, and PIGF). Exogenously added recombinant VEGF led to an up-regulation of VEGFR-2 expression, which could be inhibited by preincubation with a neutralizing anti-VEGF antibody. Addition of PDGF-BB, PIGF, and erythropoietin had no effect on VEGFR-2 expression. Our results suggest a differential but synergistic regulation by hypoxia of VEGF and VEGFR-2: a direct induction of VEGF that subsequently up-regulates VEGFR-2 in endothelial cells. This autoenhancing system may represent an important mechanism of tumor angiogenesis.[Abstract] [Full Text] [Related] [New Search]