These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 6-Alkylandrosta-4,6-diene-3,17-diones and their 1,4,6-triene analogs as aromatase inhibitors. Structure-activity relationships.
    Author: Numazawa M, Oshibe M, Yamaguchi S.
    Journal: Steroids; 1997; 62(8-9):595-602. PubMed ID: 9292934.
    Abstract:
    Two series of 6-alkylandrosta-4,6-diene-3,17-diones (5) and their 1,4,6-triene analogs 6 were synthesized as aromatase inhibitors to gain insight into the structure-activity relationship between varying the 6-n-alkyl substituents (C1-C7) and inhibitory activity. All of the steroids synthesized were extremely powerful competitive inhibitors of aromatase in human placental microsomes, with apparent Ki values for the 6-alkyl-4,6-diene steroids 5 ranging from 17 to 36 nM and with those for the 1,4,6-triene steroids 6 ranging from 2.5 to 58 nM. The 6-ethyl-1,4,6-triene compound 6b (Ki = 2.5 nM) was the most potent inhibitor among them. The 6-alkyl-1,4,6-triene steroids 6, except for the 6-methyl analog 6a, and higher affinity for aromatase than the natural substrate androstenedione (K(m) = 24 nM), and their inhibitory activities were more potent than the corresponding 4,6-diene steroids 5. In a series of the 4,6-diene steroids 5, compounds 5c-f with the n-alkyl chain substituents (C3 to C6) also had slightly higher affinity than androstenedione for dromatase. All of the 1,4,6-triene steroids 6 inactivated aromatase in a time-dependent manner, with k(inact) values ranging from 0.021 to 0.074 min-1; in contrast, the 4,6-diene analogs 5 did not. The inactivation was prevented by androstenedione, and no significant effect of L-cysteine on the inactivation was observed in each case. These results indicate that the length of the n-alkyl substituent at C-6 of androsta-1,4,6-triene-3,17-dione (6h), rather than its 4,6-diene analog 5h, plays a critical role in tight binding to the active site of aromatase. No significant correlation was observed between affinity for the enzyme and the inactivation ability of the 6-alkyl-1,4,6-trienes.
    [Abstract] [Full Text] [Related] [New Search]