These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of hypovolemia on aortic baroreflex control of heart rate in humans. Author: Convertino VA, Baumgartner N. Journal: Aviat Space Environ Med; 1997 Sep; 68(9):838-43. PubMed ID: 9293354. Abstract: INTRODUCTION: To test the hypothesis that hypovolemia can acutely increase the sensitivity of chronotropic baroreflex response, eight men (21-45 yr old) underwent measurements of heart rate response to aortic baroreceptor stimulation under normovolemic and hypovolemic conditions. METHODS: Hypovolemia was acutely induced by a bolus injection of 30 mg of furosemide. The sensitivity of the aortic-cardiac baroreflex was determined with a approximately 15 mmHg elevation in mean arterial pressure (MAP) induced by steady-state infusion of 30 to 97 micrograms.min-1 phenylephrine (PE) combined with approximately 13 mmHg lower body negative pressure (LBNP) to counteract central venous pressure elevations, and 17-19 mmHg neck pressure (NP) to offset increases in carotid sinus transmural pressure. The aortic-cardiac baroreflex gain was assessed by determining the ratio of the change in heart rate to the change in MAP (delta HR/delta MAP) between baseline and aortic baroreceptor isolated conditions (i.e., PE + LBNP + NP stage). RESULTS: When compared to normovolemia (3182 +/- 163 ml), furosemide-induced hypovolemia (2812 +/- 101 ml) resulted in an average 12% reduction in plasma volume (p = 0.05). Hypovolemia increased the average gain of the aortic-cardiac baroreflex by 68% (0.71 +/- 0.26 to 1.19 +/- 0.37 beats.min-1.mmHg-1; p = 0.0349) while it had no effect on the calculated response of the carotid-cardiac baroreflex. CONCLUSIONS: These results indicate that greater aortic baroreflex sensitivity observed in individuals who are physically untrained or have been exposed to microgravity may be explained by smaller vascular volume rather than differences in autonomic function associated with adaptations to lower aerobic capacity.[Abstract] [Full Text] [Related] [New Search]